The calculation of conformal parameters for some imbedded Riemann surfaces
نویسندگان
چکیده
منابع مشابه
Correlation Functions for Some Conformal Theories on Riemann Surfaces
We discuss the geometrical connection between 2D conformal field theories, random walks on hyperbolic Riemann surfaces and knot theory. For the wide class of CFT’s with monodromies being the discrete subgroups of SL(2,R I ) the determination of four–point correlation functions are related to construction of topological invariants for random walks on multipunctured Riemann surfaces.
متن کاملComputing Adapted Bases for Conformal Automorphism Groups of Riemann Surfaces
The concept of an adapted homology basis for a prime order conformal automorphism of a compact Riemann surface originated in [6, 7, 8, 9] and is extended to arbitrary finite groups of conformal automorphisms in [12]. Here we compute some examples of adapted homology bases for some groups of automorphisms. The method is to begin by apply the Schreier-Reidemeister rewriting process and the Schrei...
متن کاملComputation of conformal representations of compact Riemann surfaces
We find a system of two polynomial equations in two unknowns, whose solution allows us to give an explicit expression of the conformal representation of a simply connected three-sheeted compact Riemann surface onto the extended complex plane. This function appears in the description of the ratio asymptotic of multiple orthogonal polynomials with respect to so-called Nikishin systems of two meas...
متن کاملTopological Classification of Conformal Actions on pq-Hyperelliptic Riemann Surfaces
A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ρ for which X/ρ is an orbifold of genus p. Here we classify conformal actions on 2-hyperelliptic Rieman surfaces of genus g > 9, up to topological conjugacy and determine which of them can be maximal.
متن کاملConformal and Quasiconformal Categorical Representation of Hyperbolic Riemann Surfaces
In this paper, we consider various categories of hyperbolic Riemann surfaces and show, in various cases, that the conformal or quasiconformal structure of the Riemann surface may be reconstructed, up to possible confusion between holomorphic and anti-holomorphic structures, in a natural way from such a category. The theory exposed in the present paper is motivated partly by a classical result c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1960
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1960.10.121